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Introduction to the Human Auditory System

The human auditory system is
responsible for converting pressure
variations caused by the sound
waves that reach the ear into nerve
impulses that are interpreted by the
brain.

The peripheral auditory system is
divided into the Outer Ear, Middle
Ear, and Inner Ear.

The peripheral auditory system and
in particular the cochlea can be
viewed as a realtime spectrum
analyser.

The primary role of the cochlea is to
transform the incoming complex
sound wave at the ear drum into
electrical signals.

The human ear can respond to
minute pressure variations in the air
if they are in the audible frequency
range, roughly 20 Hz - 20 kHz
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Outer and Middle Ear

Incus Stapes E_Iectrical
(anvil) (sﬁr?Sp) signals.

Cochlea /

The sound waves enter a tube-like
structure called ear canal and it
serves as a sound amplifier.

The human outer ear is most

sensitive at about 3kHz and provides b Exteral e
about 20dB (decibels) of gain to the ‘ i
eardrum at around 3000Hz. O o

Middle ear transforms the vibrating
motion of the eardrum into motion of
the stapes via the two tiny bones, the
malleus and incus . 2
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The combined frequency response of
the outer and middle ear is a band-
pass response, with its peak 10
dominated near 3 kHz.
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Inner Ear

The inner ear consists of the cochlea responsible for converting the vibrations of

sound waves into electrochemical impulses which are passed on to the brain via

the auditory nerve.

The cochlea is divided along its length (3.5 cm) by the basilar membrane (BM)

which partitions the cochlear into two fluid canals (scala vestibuli and scala

tympani).

The BM terminates just reaching the helicotrema, so there is a passage way

between the scala vistibuli and the scala tymapni equalising the difference in

pressure at the ends of the two scalas.
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Basilar Membrane (Hydro Dynamical process)

v' Each point along the basilar membrane has a
characteristic frequency, f,(x), to which it is most

responsive.
f»(x) = (20000.0) 1079°%7* Hz

v" When the vibrations of the eardrum are
transmitted by the middle ear into movement of
the stapes, the resulting pressure differences
between the cochlear fluid chambers, generate
a travelling wave that propagates down the
cochlea.

v' The wave reaches maximum amplitude of
displacement on the basilar membrane at a
particular point before slowing down and
decaying rapidly
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Basilar Membrane as a Filterbank
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v’ Different frequencies
stimulate different areas of
the basilar membrane.

There will be one place
where the resonant
frequency of the membrane
matches the stimulus
frequency and this place will
show the maximum amount
of vibration

The essential function of the
basilar membrane is to act
as a frequency analyser (a
set of band-pass filters each

responding to a different
frequency region) resolving
an input sound at the

eardrum into its constituent
frequencies



Cochlear Animation
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Models of the Cochlea



Cochlear Modelling

v" A simple electrical model of a section (Ax) of the Basilar Membrane
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Cochlear Modelling

v" A simple electrical model of a section (Ax) of the Basilar Membrane
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Cochlear Modelling

v" A simple electrical model of a section (Ax) of the Basilar Membrane
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Cochlear Modelling

v" A simple electrical model of a section (Ax) of the Basilar Membrane
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Transmission Line Model of the Cochlea — Cascade Model

The basic model of the cochlea is a transmission line model in which each section of the

v
basilar membrane is modelled as a cascade of low pass, notch filters and resonators.
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Membrane displacement and Pressure envelope for a sinusoidal input
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v" Observing the envelope, the pressure is

high at the basal end and decays down mmm)

to zero at the resonant position.
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Organ of Corti

v' Attached to the basilar membrane
and running its entire length is the
organ of corti containing some
30,000 sensory hair cells.

v' There are two types of hair cells:

= One row of inner hair cells, which
carry signals to the brain

= Three rows of outer hair cells
which receive signals from the
brain

v When the basilar membrane
deflects, due to pressure wave in the
cochlear fluid it triggers the inner hair
cells to transmit nerve impulses to
brain.
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v" The mechanical

Mechanical to Neural Transduction (Electro-Chemical)

displacement to
electrical energy transduction
process takes place in the inner hair
cells

The modulation being directly
proportional to the degree of bending
of the cilia and the bending of the
cilia is one direction only; in effect a
half wave rectification of the basilar

membrane displacement takes place. Voltage{

Inner haircell response to bending of the hairs
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Cochlear Models

Transmission Line Model

Digital filter model of the basilar membrane
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Sinusoidal components at the input

Digital filter model of the basilar membrane
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Hair Cell Output Amplitude —

Hair Cell Output

(dB) —»=

(dB) -

W

G.
0.
Q.
0.
0

.
a

A"
0.
0.
0.
0.
0.
N

0.

annn

Inner hair cell output for the speech utterance “three”

rUUY
8000
7000 ~
6000
S000
4000 A
3000
2000
1000 A

04
1000 A
2000 +
3000

‘|||I||11111\

Utterance 'three' 13th frame 7

starts here)

— | ! | WM

| |

Sanple Nurber —

18th frame starts here

-

-+

Time —> £

1000 2000 3000 4000 5000 6000

7000

8000

9000

o o o
e

+—+

[a]
=
4—

¥
4+

. 4.38K%

After 13th frame

3.5k

Filter No, -

—

n
-------

03n A

[=

(W]

P
-+

o

(=]

[s:]
-

10 20

High Frequency

100 110 120
Low Frequency

After 18th frame

511t /|

AN
Ll o
1.48KE AJ

~ \
" Filter No.

L

| SO O N ST N
' O P Fii) (S Yl e B |

i

I S I B N R |

S O T Y O |

20 30 40 50 60 70 80 90

100 110 120

Digital filter model of the basilar membrane

Input ‘

_>

Middle

ear

Membrane
displacement

Base output

output

Filter 1 Filter i Filter N
Pressure Pressure

Apex

Membrane
displacement

Inner Inner
hair cell hair cell
L Electrical i
signal

Inner hair cell model

Membrane
displacement

._@_?__.

Half-wave
rectifier

Cemm= Sl(i)

d(i)

v

Inner
hair cell

Electrical
signal

Inner hair cell
Output



Loudness in Decibels (dB)

Typical Sound Levels

Frequency in Hertz (Hz)

125 250 500 1000 2000 4000 8000

100

120

Sounds Level

Faint 20dB (A faint Whisper is 30dB)

Soft (Quiet) 40dB

Moderate 60dB (normal conversation)

Loud 80dB (alarm clocks, vacuum cleaners)
Very Loud 90dB(Blenders)

110dB (Concerts, car horns)
Uncomfortable 120dB (jet planes during take off)

Painful and 130dB(Jackhammers)
dangerous 140dB(Gunshots)

v'Over 85 dB for extended periods can cause
permanent hearing loss

v’ Zero decibels (0 dB) represent the absolute
threshold of human hearing, below which we
cannot hear a sound.




Adaptive Models of Cochlea
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Cochlear Response with Active Gain

v Human auditory system can process a
vast range of sounds spanning some Direction of

traveling wave
twelve orders of magnitude of input propagation

. . Base >
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v" In order to achieve this, the cochlea
makes use of both passive and active .
SyStemS OHCS:;:H force

v' The outer hair cells (OHC) provide this
active mechanism - they amplify the
motion picked up by the IHC at low input
sound levels at that frequency
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Transmission Line Model with Feedback

The basilar membrane within the cochlea is normally in a passive state.

Upon stimulation by a frequency of low amplitude, the section of the basilar
membrane corresponding to that frequency transitions to an active state

(adaptively higher-Q spectral decomposition).

It is surprising how this large number of locally acting feedback loops can act
together to give a large and uniform amplification of the global response of the

BM.

It would be desirable to have an active model of the cochlea that incorporates
the level-dependent adaptive gain and adaptive frequency selectivity properties.
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Active Cochlear Modelling
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Active Cochlear Modelling
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Active Transmission Line Model

ACTIVE TRANSMISSION LINE MODEL
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Cochlear implants




Cochlear Implant System

Cochleare

v' Sounds processor is positioned behind the ear and transmits signals via RF to implant
v"Implant consists of receiver coil and electrode array and is surgically inserted inside the

inner ear

v Electrode array excites the auditory nerves

transmitter coil
microphones

implant
sound
sound / ;/‘
processor _

receiver coil

electrode array

Phase-contrast Imaging of Cochlea
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Basal Turn

Xu et al. 2000




Signal Path Overview — Sound Processor ch
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Future Trends - Integration Auditory Models with
DNN

SPEECH SYSTEM OUTPUT

v A feed-forward adaptive spectral
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Future Trends —Binaural Auditory Models for Al
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v' Exploit binaural variations to develop a robust cochlear front-end for future Al

systems
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Conclusions

v' Future models of cochlea will include active feedback mechanisms to improve
detection of smaller signals

v' Filters in the cochlear models and adaptive feedback paths both may be
implemented as deep learning models thus enabling integration with state-of-the-
art speech processing systems

v" This could lead to benefits for cochlear implants in terms of being able to adapt to
the environment as well as learning and adapting to the individual
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Active Transmission Line Model
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